
Agent based Systems #1 Budditha Hettige

1

Agent Based Systems

2
Modeling Complex Systems with

NetLogo

Dr Budditha Hettige

Agent based Systems #1 Budditha Hettige

2

Agent based Systems #1 Budditha Hettige

3

Contents
Agent based Simulation Using Netlogo 5

NetLogo Interface ... 6

NetLogo GUI... 6

NetLogo, Extensions ... 9

Turtle Shape Editor ... 11

Turtle Monitor ... 12

NetLogo Environment .. 15

Simulation Environment ... 17

Interactions between Turtles.. 25

Turtle States and Behaviors ... 28

Breed Specific Behavior.. 34

NetLogo Examples.. 44

Example 1 .. 44

Agent based Systems #1 Budditha Hettige

4

Agent based Systems #1 Budditha Hettige

5

Agent based Simulation Using Netlogo

Agent-based system simulation is a powerful approach that

allows researchers to model and analyze complex systems by

simulating the behavior and interactions of individual agents

within the system. NetLogo is a widely used programming

language and integrated development environment (IDE)

specifically designed for building agent-based simulations. It

provides a user-friendly interface and a range of built-in features

that make it accessible to both novice and experienced users.

NetLogo is widely used in various fields, including social

sciences, ecology, economics, and computer science. It enables

researchers to explore complex systems, study the effects of

different variables and interventions, and gain insights into the

behavior and dynamics of agent-based systems. By leveraging the

capabilities of NetLogo, researchers can gain a deeper

understanding of complex systems and make informed decisions

based on the outcomes of agent-based simulations.

Further, Agent-based modeling is a bottom-up modeling

approach in which individual agents are defined and programmed

to interact with their environment and other agents. Agents can

possess various attributes, behaviors, and decision-making rules,

which collectively drive the dynamics of the system being

modeled.

Steps to Install NetLogo

To install NetLogo please use the following steps;

1. Visit the NetLogo website: Go to the official NetLogo website

at https://ccl.northwestern.edu/netlogo/.

2. Download the installer: Click on the "Download" link on the

website's navigation menu. It will lead you to the download

page.

Agent based Systems #1 Budditha Hettige

6

3. Choose your operating system: On the download page, you

will see options for different operating systems (e.g.,

Windows, macOS, and Linux). Select the appropriate version

for your system.

4. Download the installer: Click on the link to download the

installer file. The file size is relatively small, so the download

should complete quickly.

5. Install NetLogo: Once the installer has finished downloading,

run it to start the installation process. Follow the on-screen

instructions to install NetLogo on your computer. The steps

may vary slightly depending on your operating system.

6. Launch NetLogo: After installation, you can launch NetLogo

by double-clicking on its icon (for Windows and macOS) or

by running it from the Applications folder (for macOS).

NetLogo Interface

The NetLogo interface is designed to provide a user-friendly

environment for creating, running, and visualizing agent-based

models. It consists of various components that allow users to

interact with the model, observe simulation results, and modify

the model's behavior

NetLogo GUI

Agent based Systems #1 Budditha Hettige

7

Netlogo User interface

Command Center: The Command Center is the primary area

where you can interact with the model using NetLogo's Logo-

based programming language. It allows you to enter and execute

commands, setup parameters, and control the simulation.

Info Tab: The Info tab provides information about the current

model, including its name, author, description, and version. It

may also contain additional notes or instructions provided by the

model creator.

Code Tab: The Code tab allows you to view and edit the model's

source code. The code is written in NetLogo's Logo language,

which is a variant of Lisp. Here, you can modify the model's

behavior, create custom functions, and add new features.

Agent based Systems #1 Budditha Hettige

8

Interface Tab: The Interface tab provides controls for adjusting

model parameters and settings. You can create sliders, buttons,

switches, and input boxes to manipulate the model's variables

interactively. These interface elements allow you to change the

model's initial conditions, run experiments, and observe the

effects in real-time.

Graphs and Plots: NetLogo allows you to create graphs and

plots to visualize simulation results dynamically. The interface

provides options to display agent-related statistics, system-level

measures, and other variables over time.

Info and Procedures Tabs: These tabs are hidden by default but

can be expanded as needed. The Info tab displays additional

information about agents and patches in the model, while the

Procedures tab shows the model's built-in procedures, functions,

and user-defined code.

Turtle Monitor and Patch Monitor: These are specialized

windows that display real-time information about specific agents

(turtles) or patches in the simulation. You can use these monitors

to observe agent attributes, patches' states, or any other relevant

data during the simulation.

Model Control Buttons: The interface includes various buttons

that allow you to control the simulation, such as starting and

stopping the simulation, resetting the model, and stepping

through the simulation one iteration at a time.

Model Preview: The preview area displays the model itself. It

shows agents (turtles) represented as individual icons and their

interactions with the environment (patches). The model preview

updates in real-time as the simulation runs.

Agent based Systems #1 Budditha Hettige

9

NetLogo, Extensions
NetLogo, extensions are external libraries that provide additional

functionalities to the modeling environment. They allow users to

extend the capabilities of NetLogo by adding new features, data

formats, and algorithms. Extensions are typically written in other

programming languages (e.g., Java, Scala, Python) and are

integrated into NetLogo through the NetLogo Extension API.

NetLogo extensions are useful when the built-in features of

NetLogo are not sufficient for a specific modeling task or when

you want to use specialized tools or algorithms available in

external libraries.

Installing Extensions: To use an extension, you need to install it

first. NetLogo provides a set of built-in extensions that can be

installed through the Extension Manager. Additionally, third-

party extensions can be downloaded from various sources and

then installed using the "Extensions" menu in the NetLogo

interface.

Agent based Systems #1 Budditha Hettige

10

Importing Extensions: Once an extension is installed, you need

to import it into your NetLogo model. This is typically done using

the extensions keyword in your NetLogo code. For example, to

use the "GIS" extension for geospatial data, you would write

extensions [gis].

Accessing Extension Features: After importing an extension,

you can access its functions, procedures, and data types in your

model code. Each extension has its own set of commands and

reporters that can be used to interact with the extension's

functionality.

Using Extension Primitives: Extensions often provide new

primitives (commands and reporters) that can be used in your

NetLogo model. These primitives allow you to perform specific

tasks or calculations provided by the extension.

Extension Documentation: Each extension comes with its

documentation, which explains the available commands,

reporters, and usage examples. You can refer to the

documentation to understand how to use the extension effectively.

Third-Party Extensions: Besides the built-in extensions, there

are many third-party extensions developed by the NetLogo

community. These extensions cover a wide range of topics, such

as advanced statistics, network analysis, optimization algorithms,

and more. You can find third-party extensions on the NetLogo

website or other community platforms.

Some popular built-in extensions in NetLogo include "Goo,"

"Sound," "Table," and "Matrix." Third-party extensions can

greatly expand the modeling capabilities of NetLogo and provide

solutions for specific domains or research areas.

Agent based Systems #1 Budditha Hettige

11

Turtle Shape Editor
The "Turtle Shape Editor" allows you to create custom shapes for

the turtles, giving you more flexibility in visually representing

different agents or objects in your simulation.

Open the Turtle Shape Editor: To access the Turtle Shape Editor,

go to the NetLogo interface and click on the "Turtles" tab. From

there, you should see a button labeled "Turtle Shapes." Click on

this button to open the Turtle Shape Editor window.

Create or Modify Shapes: In the Turtle Shape Editor, you can

draw custom shapes using simple drawing tools like lines,

rectangles, circles, and polygons. You can also import image files

to use as turtle shapes.

Define Different Turtle States: NetLogo allows you to define

multiple turtle shapes corresponding to different states or

appearances. For example, you might want turtles to have

different shapes when they are active, inactive, or represent

different agent types.

Assign Shapes to Turtles: Once you have created or modified

turtle shapes, you can assign these shapes to individual turtles in

your model. This can be done using the NetLogo programming

language or the Interface tab in the model interface.

Run the Simulation: After setting up the turtle shapes, you can run

your simulation to see the customized turtle appearances in

action.

Agent based Systems #1 Budditha Hettige

12

Turtle Monitor
In NetLogo, a "Turtle Monitor" is a specialized window that

displays real-time information about specific turtles (agents) in

your simulation. It allows you to observe and analyze individual

turtle attributes, such as their position, heading, color, or any other

custom variables you define for them.

Agent based Systems #1 Budditha Hettige

13

Setup: Before using a Turtle Monitor, you need to make sure you

have defined and created the turtles in your model. This can be

done in the "Setup" procedure or using the Interface tab to set the

initial number of turtles and their attributes. The Turtle Monitor

is a helpful tool for debugging and gaining insights into the

behavior of individual turtles in your agent-based models. It

allows you to observe how specific turtles interact with their

environment, change their states, and respond to changes in the

model's conditions.

Opening a Turtle Monitor: To create a Turtle Monitor, go to the

NetLogo interface and click on the "Turtles" tab. From there, you

should see a button labeled "Turtle Monitor." Click on this button

to open the Turtle Monitor window.

Selecting Turtles: In the Turtle Monitor, you can select the turtles

whose attributes you want to observe. You can choose to observe

all turtles or a subset of them based on certain conditions.

Agent based Systems #1 Budditha Hettige

14

Observing Attributes: Once you have selected the turtles, the

Turtle Monitor will display their attributes in real-time as the

simulation runs. You can choose which attributes to display and

customize the appearance of the monitor.

Updating the Monitor: As the simulation progresses, the Turtle

Monitor will update automatically, showing the latest values of

the selected turtle attributes at each iteration.

Customizing the Monitor: You can adjust the layout, font size,

and other settings of the Turtle Monitor to suit your preferences

and analysis needs.

Agent based Systems #1 Budditha Hettige

15

NetLogo Environment

NetLogo provides a graphical user interface (GUI) where users

can build and run agent-based simulations. The interface consists

of a world grid where agents move and interact, along with a set

of tools for defining agents, specifying their behaviors, and

visualizing simulation outcomes.

Defining Agents

In NetLogo, agents can represent various entities, such as

individuals, groups, or objects. Agents can be defined with

specific attributes, such as position, size, color, and variables

representing their state or characteristics. The behavior of agents

is typically defined through procedures or rules that dictate their

actions and interactions.

Interactions and Communication

Agents in NetLogo can interact with their environment and other

agents through a variety of mechanisms. They can move, change

their attributes, communicate through messages or signals, and

influence the behavior of other agents. These interactions can be

based on proximity, spatial relationships, or predefined rules.

Simulation Control

NetLogo allows users to define the rules and parameters that

govern the simulation. Users can specify the duration of the

simulation, control the speed of execution, and define the initial

conditions and environmental constraints. NetLogo also provides

tools for collecting and analyzing data during the simulation.

Agent based Systems #1 Budditha Hettige

16

Experimentation and Analysis

NetLogo facilitates experimentation and analysis by allowing

users to run multiple simulations with different parameter

settings. Users can observe the emergent behavior of the system,

collect data on agent-level interactions, and analyze simulation

results using built-in statistical functions or by exporting data for

further analysis in external tools.

Programming Language

NetLogo has its own programming language, which is simple and

easy to learn. It is a variant of Logo, which was popular in the

1980s and 1990s as a language for teaching programming to

beginners. NetLogo's language includes primitives for controlling

agent behavior, accessing environment information, and

managing simulation parameters.

Extension Libraries

NetLogo offers a range of extension libraries that provide

additional functionality for modeling specific domains or

phenomena. These extensions can include advanced visualization

tools, social network analysis, geographic information system

(GIS) integration, or integration with external data sources.

Agent based Systems #1 Budditha Hettige

17

Simulation Environment

The simulation environment is composed of four main

components: turtles, patches, links, and the observer. Each of

these components plays a crucial role in the agent-based modeling

process, enabling the simulation of complex systems and

interactions. Here's a brief overview of each component:

 Turtles: Turtles are the mobile agents in NetLogo. They

represent individual entities that can move around the simulation

world, interact with each other, and change their properties over

time. Turtles can have attributes (variables) that determine their

characteristics and behavior. For example, in a model simulating

a predator-prey system, turtles could represent predators and prey.

Each turtle can have its own unique set of variables that dictate

its actions and interactions with the environment and other turtles.

Patches: Patches form the static grid-like world in which the

turtles move. They are arranged in a two-dimensional grid and

can be thought of as cells or individual units of space. Patches do

not move, but they have attributes that can be accessed and

modified by turtles. These attributes can represent environmental

features, resources, or any other relevant information. Patches are

particularly useful for modeling spatially explicit systems, and

their properties can influence the behavior of the turtles that

occupy them.

Links: Links represent connections or relationships between

turtles in NetLogo. They are used to model networks or

Agent based Systems #1 Budditha Hettige

18

associations between agents. For example, in a social network

model, links could represent friendships between individuals.

Links have attributes just like turtles and patches, allowing

researchers to model complex interactions and information

exchange between connected agents.

The Observer: The observer is not an agent in the simulation but

rather an entity that oversees the entire simulation. It can be

thought of as the "controller" or "manager" of the simulation. The

observer can access and modify global variables, control the flow

of the simulation, and execute procedures to start, stop, or modify

the simulation run. Additionally, the observer can provide an

interface for the user to interact with the simulation, input

parameters, and view the results.

These four components together create a flexible and powerful

environment for agent-based modeling in NetLogo. Modelers can

define the rules and behaviors of turtles and links, access and

modify patch attributes, and use the observer to run experiments

and observe emergent patterns in the system. This combination

allows for the exploration of a wide range of phenomena in

various scientific and social domains.

Turtles

Turtles are the individual agents in NetLogo, representing entities

that can move around the simulation world, interact with each

other, and change their properties over time. They are a

fundamental building block for creating agent-based models in

NetLogo.

Agent based Systems #1 Budditha Hettige

19

Creating Turtles: You can create turtles using the create-turtles

command followed by the number of turtles you want to create.

For example, create-turtles 100 will create 100 turtles in the

simulation.

In NetLogo, turtles can be visually represented using different

shapes, allowing modelers to give agents distinctive appearances

in the simulation. NetLogo provides a variety of built-in shapes,

and you can also create custom shapes using vector graphics.

Built-in turtle shapes

Default: The default shape is a simple triangle pointing upwards.

It is the default shape assigned to turtles if no other shape is

specified.

• Turtle: The turtle shape is similar to the default shape but

has a more stylized appearance.

• Circle: Turtles can be represented as circles.

• Square: Turtles can be represented as squares.

• Arrow: The arrow shape is an arrow pointing upwards.

• Person: Turtles can be represented as little stick-figure-

like people.

• Robot: The robot shape depicts a little robot character.

• Car: The car shape represents a simple car.

• Fish: Turtles can be represented as fish.

• Bug: The bug shape is a small bug-like creature.

Agent based Systems #1 Budditha Hettige

20

• Butterfly: Turtles can be represented as butterflies.

• Gosper: The Gosper shape is a complex shape resembling

a fractal pattern.

Attributes and Variables

Turtles can have attributes, which are represented as variables.

These variables can hold numerical values, strings, or Boolean

values. Modelers can define custom variables for turtles to

represent their characteristics, states, or any other relevant

information.

In NetLogo, turtles are born with several built-in attributes, also

known as turtle variables, which provide them with essential

properties and behaviors. These attributes allow turtles to interact

with their environment, other turtles, and the simulation as a

whole. Here are the 13 built-in attributes that every turtle is born

with in NetLogo:

Who: This attribute uniquely identifies each turtle with an integer

value. The who attribute is automatically assigned by NetLogo,

and each turtle is given a distinct "who" number when it is

created.

Color: The color attribute determines the color of the turtle's

shape. It can be set using a color value (e.g., "red," "blue,"

"green") or an RGB color value.

Shape: The shape attribute specifies the shape of the turtle. It can

be set to one of the built-in shapes, such as "default," "turtle,"

"circle," "square," or to a custom shape loaded from an SVG file.

Size: The size attribute defines the size of the turtle's shape. It can

be set to a numerical value to control the size of the turtle on the

simulation's graphical interface.

Agent based Systems #1 Budditha Hettige

21

Heading: The heading attribute represents the current orientation

or direction the turtle is facing. It is measured in degrees, with 0

representing north, 90 representing east, and so on.

Label: The label attribute is used to display text labels on turtles.

It allows you to provide additional information about each turtle

on the simulation interface.

Xcor and Ycor: These attributes represent the turtle's current X

and Y coordinates in the grid-based world. The xcor and ycor

variables determine the turtle's position in the simulation

environment.

Hidden?: The hidden? attribute determines whether the turtle is

hidden (not visible) on the simulation interface. A hidden turtle

still exists in the simulation but is not shown.

Breed: The breed attribute specifies the breed to which the turtle

belongs. Breeds are user-defined groups of turtles with shared

characteristics and behavior.

Label Color: The label-color attribute sets the color of the turtle's

label. It can be different from the color of the turtle's shape.

Label-Size: The label-size attribute defines the font size of the

turtle's label text.

Label-Position: The label-position attribute determines the

position of the turtle's label relative to the shape. It can be set to

"above," "below," "left," or "right."

Label-Space: The label-space attribute specifies the distance

between the turtle's shape and its label.

These built-in attributes provide turtles with various

characteristics and properties, which can be used to model

complex agent-based systems in NetLogo. Additionally, NetLogo

allows you to create custom attributes and variables for turtles,

Agent based Systems #1 Budditha Hettige

22

making the modeling capabilities even more versatile and

powerful.

Moving Turtles: Turtles can move around the simulation world

using the forward and backward commands to move along the

current heading, or right and left commands to change their

heading (orientation). For more complex movements, you can use

mathematical calculations with setxy, fd, bk, rt, and lt commands.

Moving turtles is a fundamental aspect of agent-based modeling.

Turtles can be programmed to move around the simulation world,

responding to various conditions and interacting with the

environment and other turtles. Here are some common methods

for moving turtles in NetLogo:

 fd (Forward) and bk (Backward) Commands:

The fd command allows turtles to move forward in the direction

they are facing.

The bk command allows turtles to move backward.

Both commands take a numerical value as an argument,

indicating the number of steps the turtle should move.

Example:

 fd 10;

setxy Command:

The setxy command sets the turtle's position to specific X and Y

coordinates in the simulation world.

Agent based Systems #1 Budditha Hettige

23

It is commonly used when you want to move a turtle to a precise

location.

Example:

Netlogo to move-turtle-to-location

setxy 5 10

end

rt (Right) and lt (Left) Commands:

The rt command turns the turtle to the right by a specified number

of degrees. The lt command turns the turtle to the left. Both

commands take an angle (in degrees) as an argument.

Example:

Netlogo to turn-right

 rt 90

end

Random Movement:

Turtles can be programmed to move randomly within a certain

range using the random function. By combining random values

with movement commands, turtles can explore the environment

in a stochastic manner.

Example:

netlogo

to move-randomly

fd random 10 ; Move forward a random distance between 0 and 10.

Agent based Systems #1 Budditha Hettige

24

rt random 180 ; Turn right by a random angle between 0 and 180 degrees.

end

Slope-Based Movement:

Turtles can move along specific paths determined by slope values

and distance calculations.

For example, you can use trigonometric functions to move turtles

along circular paths or other geometric shapes.

Example:

Netlogo to move-in-circle

 let radius 5

 let angle 10

 rt angle

 fd radius * sin angle

 lt angle

end

These examples demonstrate different ways to move turtles in

NetLogo. The movement of turtles is a crucial component of

agent-based models, allowing you to explore the emergent

behavior and patterns that arise from the interactions and

movements of individual agents. You can combine these

movement techniques with conditional statements and

interactions with other turtles and the environment to create more

complex and realistic simulations.

Agent based Systems #1 Budditha Hettige

25

Interactions between Turtles
Turtles can interact with each other through procedures

(functions) and links. They can access and modify the properties

of other turtles, and they can also exchange information,

resources, or coordinate actions.

Interactions between turtles are at the core of agent-based

modeling in NetLogo. Turtles can interact with each other based

on their positions, attributes, and behaviors, leading to emergent

patterns and collective behaviors within the simulation. Here are

some common ways in which turtles can interact with each other

in NetLogo:

Proximity-Based Interactions

Turtles can interact with other turtles that are within a certain

distance from them in the simulation world. You can use the in-

radius primitive to check for turtles within a specified radius of

the current turtle.

Example:

Netlogo to interact-with-neighbors

 let nearby-turtles turtles in-radius 5

 ask nearby-turtles [

 ; Perform interactions with neighboring turtles here

]

End

Agent based Systems #1 Budditha Hettige

26

Breeds and Group-Based Interactions

Turtles can interact with turtles of the same breed or specific

breeds. Breeds allow you to group turtles based on their attributes,

making it easier to perform interactions within specific

subgroups.

Example:

netlogo

to interact-with-same-breed

 ask turtles with [breed = "predators"] [

 ; Interact with other predators here

]

end

Communication and Information Sharing:

Turtles can communicate with each other by sharing information

or sending messages. This can be achieved by using global

variables or creating custom variables to represent shared

information.

Example:

Netlogo to communicate-with-neighbors

 let nearby-turtles turtles in-radius 5

 ask nearby-turtles [

 set shared-variable value ; Set a shared variable for

communication

]

Agent based Systems #1 Budditha Hettige

27

end

Competition and Cooperation:

 Turtles can compete or cooperate with each other, leading to

changes in their attributes or behaviors.

 Interactions might involve competing for resources,

cooperating in collective tasks, or engaging in predator-prey

dynamics.

Example:

Netlogo to compete-for-resources

 let target one-of turtles with [breed = "food" and distance myself

< 5]

 if target != nobody [

 ; Turtles compete for resources here

]

end

Link-Based Interactions:

 Turtles can be connected through links, representing

relationships or connections between them. Link-based

interactions are useful for modeling social networks,

transportation networks, and other relational structures.

Agent based Systems #1 Budditha Hettige

28

Example:

Netlogo to interact-through-links

 ask turtles [

 let linked-turtles my-links ; Get turtles connected to the current

turtle

 ask linked-turtles [

 ; Interact with linked turtles here

]

]

end

Interactions between turtles in NetLogo allow you to model a

wide range of phenomena, from social dynamics and ecological

systems to traffic flow and economic behaviors. By defining rules

and procedures for turtle interactions, you can observe the

emergence of complex patterns and behaviors at the system level,

which are the hallmark of agent-based modeling.

 Turtle States and Behaviors
 Turtle States and Behaviors: Turtles can have different states

throughout the simulation, and their behaviors may change based

on their current state. Modelers define procedures that dictate

how turtles respond to stimuli, make decisions, and interact with

their environment and other agents.

In NetLogo, turtle states and behaviors are essential components

of agent-based modeling that define how individual turtles

behave and how their actions change based on the state of the

simulation or their own attributes. Turtle states represent the

Agent based Systems #1 Budditha Hettige

29

current condition or situation of a turtle, while turtle behaviors are

the actions and interactions that turtles exhibit in response to their

states and the environment. Here's an overview of turtle states and

behaviors in NetLogo:

Turtle States:

 Turtle states refer to the different conditions or attributes that

turtles can have during the simulation. These states can be based

on various factors, such as the turtle's energy level, age, position

in the environment, or its relationships with other turtles.

Modelers can define custom states for turtles to represent specific

aspects of the system being modeled. States are typically

represented by turtle variables that hold numerical values, strings,

or Boolean values.

Example:

Netlogo turtles-own [

 energy

 is-hungry?

 is-healthy?

]

In this example, turtles have three states: energy, is-hungry?, and

is-healthy?.

Turtle Behaviors:

 Turtle behaviors refer to the actions and interactions that

turtles perform in response to their states and the environment.

Behaviors are typically defined as procedures (functions) that

dictate what turtles do under certain conditions or in specific

Agent based Systems #1 Budditha Hettige

30

situations. Turtle behaviors can include moving, reproducing,

consuming resources, interacting with other turtles, and

responding to changes in their states or the environment.

Example:

Netlogo to move-turtle

 fd 1

end

to reproduce

 if energy > reproduction-energy [

 hatch 1 [

 set energy 0

]

]

end

to consume-food

 let target one-of turtles with [breed = "food" and distance myself < 3]

 if target != nobody [

 ask target [

 die

]

 set energy energy + energy-gain-from-food

]

end

In this example, we have defined three behaviors for turtles:

move-turtle, reproduce, and consume-food.

Agent based Systems #1 Budditha Hettige

31

Using States to Drive Behaviors:

 The states of turtles often influence their behaviors. For

example, turtles might move differently when they are hungry

compared to when they are not. Conditional statements (e.g., if,

ifelse) are commonly used to implement behaviors based on the

current states of turtles.

Example:

Netlogo to move-turtle

 if is-hungry? [

 fd 0.5

] else [

 fd 1

]

end

In this example, the turtle moves at half speed (fd 0.5) when it is

hungry (is-hungry?), and at full speed (fd 1) otherwise.

By defining turtle states and behaviors, modelers can create

dynamic simulations where individual turtles respond to their

internal states, the state of the environment, and the actions of

other turtles. These interactions lead to emergent behaviors and

patterns at the system level, providing valuable insights into the

dynamics of complex systems.

Agent based Systems #1 Budditha Hettige

32

Conditional Actions

Turtles can use conditional statements (e.g., if, ifelse) to make

decisions based on their attributes or the state of the simulation.

This allows for more sophisticated and dynamic behaviors.

Conditional actions in NetLogo involve making decisions based

on specific conditions or rules. These conditions are often

represented using Boolean expressions or comparisons, and they

control the flow of the model, allowing turtles to take different

actions depending on the current state of the simulation or their

own attributes. Conditional actions are implemented using if

statements (if), if-else statements (ifelse), and sometimes nested

conditions. Here's how they work:

if Statement:

 The if statement allows you to execute a block of code if a

specified condition is true. If the condition is false, the block of

code is skipped, and the model continues to the next statement

after the if block. The if statement is followed by the condition in

square brackets. If the condition is true, the code inside the square

brackets is executed.

Example:

Netlogo to hungry-turtles-feed

 ask turtles [

 if energy < 50 [

 fd 1

]

]

end

Agent based Systems #1 Budditha Hettige

33

In this example, turtles with energy less than 50 will move

forward by one step.

ifelse Statement

The ifelse statement provides an alternative action when the

condition of the if statement is false. If the if condition is true, the

code inside the first set of square brackets is executed. Otherwise,

the code inside the second set of square brackets is executed.

Example:

Netlogo to hungry-turtles-feed

 ask turtles [

 ifelse energy < 50 [fd 1] [rt 45]

]

end

In this example, turtles with energy less than 50 will move

forward by one step, and if their energy is greater than or equal to

50, they will turn right by 45 degrees.

Nested Conditions:

 You can nest if and ifelse statements within each other to

create more complex conditions and behaviors. The inner if or

ifelse statements will only be evaluated if the conditions of the

outer statements are true.

Agent based Systems #1 Budditha Hettige

34

Example:

Netlogo to hungry-turtles-feed

 ask turtles [

 if is-hungry? [

 if energy < 50 [

 fd 1

] else [

 rt 45

]

]

]

end

In this example, only turtles that are hungry will evaluate the

inner condition. If their energy is less than 50, they move forward;

otherwise, they turn right by 45 degrees.

Conditional actions are powerful tools for creating dynamic and

adaptive agent-based models in NetLogo. By incorporating

conditional statements, turtles can respond to their own states, the

states of other turtles, and the state of the environment, leading to

a wide variety of behaviors and interactions in the simulation.

Breed Specific Behavior
You can define multiple breeds of turtles with unique behaviors

and characteristics using the breed keyword. Breeds allow you to

organize different types of turtles and apply specific rules to each

group. Breed-specific behavior is a feature in NetLogo that allows

Agent based Systems #1 Budditha Hettige

35

you to define different behaviors and rules for turtles belonging

to different breeds. Breeds are user-defined groups of turtles with

shared characteristics and attributes. By creating multiple breeds

and specifying unique procedures for each breed, you can

simulate heterogeneous populations of agents in your model.

Breed-specific behavior enhances the flexibility and realism of

agent-based models, as different types of agents can behave

differently, interact distinctively, and respond to the environment

in unique ways.

Defining Breeds:

 First, you need to define the breeds you want to use in your

model using the breed keyword. For example, you can define

breeds for predators and prey in a predator-prey simulation:

Netlogo

breed [predators predator]

breed [prey preys]

Creating Turtles of Different Breeds:

To create turtles of a specific breed, use the breed name followed

by the create- keyword.

For example, to create five predators and ten prey:

Netlogo

create-predators 5

create-preys 10

Agent based Systems #1 Budditha Hettige

36

Breed-Specific Procedures:

After creating the breeds, you can define procedures (functions)

that are specific to each breed. Use the ask command to apply a

procedure to all turtles of a particular breed. You can use the with

keyword to filter turtles based on breed or other conditions.

Example:

to move-predators

 ask predators [

 ; breed-specific movement for predators

 fd 1

]

end

to move-prey

 ask preys [

 ; breed-specific movement for prey

 rt random 50 - 25

 fd 1

]

end

In this example, move-predators is a procedure specific to the

"predators" breed, and move-prey is specific to the "prey" breed.

Predators move forward, while prey move randomly within a

range.

Agent based Systems #1 Budditha Hettige

37

Breed-Specific Variables:

 You can also define breed-specific variables that hold

different values for each breed. These variables can influence

breed-specific behaviors or represent breed-specific attributes.

Example:

breed [predators predator]

breed [prey preys]

predators-own [

 hunting-range ; Breed-specific variable for predators

]

prey-own [

 hiding-spot ; Breed-specific variable for prey

]

to setup

 clear-all

 create-predators 5 [

 set shape "wolf"

 set color red

 set hunting-range 5

]

 create-preys 20 [

 set shape "rabbit"

Agent based Systems #1 Budditha Hettige

38

 set color blue

 set hiding-spot one-of patches

]

 reset-ticks

end

In this example, we define breed-specific variables hunting-range

for predators and hiding-spot for prey.

By utilizing breed-specific behavior, you can model diverse

interactions and dynamics among agents in your NetLogo model.

Each breed can have its own attributes, rules, and interactions,

enabling you to explore complex systems where different types

of agents exhibit unique behaviors in response to their

environment and other agents.

Appearance

Turtles can be visually represented using various shapes, colors,

and sizes. NetLogo provides built-in shapes, and you can create

custom shapes using vector graphics. The appearance of turtles

and patches can be customized to create a visually appealing and

informative simulation. Appearance settings allow you to control

the color, shape, size, and labels of turtles and patches on the

simulation's graphical interface. By adjusting these appearance

settings, you can enhance the visual representation of your agent-

based model and convey information more effectively. Here are

some of the appearance-related features in NetLogo:

Agent based Systems #1 Budditha Hettige

39

Turtle Shapes:

 Turtles can be visually represented using different shapes,

such as triangles, circles, squares, or custom shapes in SVG

format. The set shape command is used to change the shape of

turtles.

Example:

set shape "circle"

Turtle Colors:

 The color of turtles can be customized to distinguish

between different breeds or represent various states of the agents.

The set color command is used to change the color of turtles.

Example:

set color red

Turtle Size:

 The size of turtles can be adjusted to make them more visible

and prominent on the graphical interface. The set size command

is used to change the size of turtles.

Example:

set size 2

Labels:

 Labels can be added to turtles to display additional

information about them. Labels are useful for showing attributes

Agent based Systems #1 Budditha Hettige

40

or states of turtles directly on the graphical interface. The set label

command is used to add labels to turtles.

Example:

set label "Agent 1"

Label Color and Size:

 The color and font size of the labels can be customized to

improve readability. The set label-color and set label-size

commands are used to change the label color and size,

respectively.

Example:

set label-color white

set label-size 12

Patches Colors:

 Patches, which make up the grid-based environment in

NetLogo, can have different colors to represent different states or

conditions. The set pcolor command is used to change the color

of patches.

Example:

set pcolor green

Agent based Systems #1 Budditha Hettige

41

Patch Colors Based on Values:

 Patches can be colored based on their values, allowing you

to visualize data on the grid. For example, you can use the set

pcolor scale-color command to color patches based on numeric

values.

Example:

set pcolor scale-color blue [value] [0 100]

These appearance settings, combined with other aspects of

NetLogo's visualization capabilities, allow you to create visually

engaging and informative agent-based models. Proper

visualization enhances the explanatory power of your model and

facilitates a better understanding of the simulation's dynamics and

emergent patterns.

Linking Turtles

Turtles can be connected to each other using links. Links

represent relationships or connections between turtles and are

useful for modeling networks, social interactions, and other forms

of relationships. Linking turtles in NetLogo allows you to

establish connections or relationships between individual turtles,

creating networks or social structures within the model. The

process of linking turtles involves creating links (edges) between

turtles to represent interactions, dependencies, or other

connections among them. In NetLogo, links can be directed or

undirected and can have attributes that store additional

information about the relationship between turtles. Here's how

you can link turtles in NetLogo:

Agent based Systems #1 Budditha Hettige

42

 Defining Link Breeds:

 Before linking turtles, you need to define the types of links you

want to use in your model using the breed keyword for links.

You can define multiple breeds of links to represent different

types of relationships.

Example:

breed [predators predator]

breed [prey preys]

breed [predator-prey-links predator-prey-link]

Creating Links:

To create a link between two turtles, use the create-link-to or

create-links-with command. You can specify the breed of the link

and the target turtle(s) as arguments.

Example:

ask predator 0 [

 create-link-to prey 0

]

In this example, we create a link from the predator with who

number 0 to the prey with who number 0.

Directed and Undirected Links:

 By default, links are undirected, meaning that they do not

have a specific direction. If you want to create directed links, you

can use the create-link-from command to establish links from one

turtle to another.

Agent based Systems #1 Budditha Hettige

43

Example:

ask predator 0 [

 create-link-from prey 0

]

In this example, we create a directed link from the prey with who

number 0 to the predator with who number 0.

Link Attributes:

Links can have attributes that store additional information about

the relationship between turtles. You can define and access link

variables in a similar way to turtle variables.

Example:

breed [predators predator]

breed [prey preys]

breed [predator-prey-links predator-prey-link]

predator-prey-links-own [

 strength

]

to setup

 clear-all

 create-predators 5

 create-preys 10

Agent based Systems #1 Budditha Hettige

44

 ask predators [

 create-link-to one-of prey [

 set strength random 100

]

]

 reset-ticks

end

In this example, we define a link attribute called strength to

represent the strength of the relationship between predators and

prey.

Linking turtles in NetLogo is useful for modeling social

networks, predator-prey interactions, transportation systems, and

various other relational structures within your agent-based model.

Links provide a powerful mechanism for representing complex

relationships between agents, which can lead to more

sophisticated and realistic simulations.

NetLogo Examples

Example 1
Example 1: create turtles and have them move forward

In this example, the code is very minimal. When you run this code

in NetLogo, it will create 10 turtles and place them at the center

of the canvas. The turtles will then move forward by 1 unit at each

tick.

Agent based Systems #1 Budditha Hettige

45

Instructions to use the code:

Open NetLogo and create a new model.

Copy the above code and paste it into the Code tab of the NetLogo

interface.

Click on the "Setup" button to create 10 turtles at the center of the

canvas.

Click on the "Go" button to start the turtles' movement. They will

move forward at each tick, but since the code does not include

turning commands, they will all move in the same direction.

to setup

 clear-all

 create-turtles 10

 reset-ticks

end

to go

 ask turtles [

 fd 1 ; Move the turtle forward by 1 unit

]

 tick

end

Agent based Systems #1 Budditha Hettige

46

Foraging scenario

Where turtles move around the canvas, collecting food from

patches. The patches will represent food sources, and turtles will

search for and eat the food, leaving a trail behind as they move.

In this example, we have added behaviors to the turtles to make

them seek out and eat food represented by the green patches on

the canvas. When a turtle finds a food patch within a radius of 3

units, it moves towards the patch, eats the food (changes the patch

color to white), and leaves a label "+" on the patch to indicate that

it was consumed.

Here's how you can use this code:

1. Open NetLogo and create a new model.

2. Copy the above code and paste it into the Code tab of the

NetLogo interface.

3. Click on the "Setup" button to create 10 turtles at random

positions and set up the food sources (green patches) on

the canvas.

4. Click on the "Go" button to start the simulation. Turtles

will move around, forage for food, and leave a trail of

white patches with "+". The food patches will disappear

as they get consumed.

You can further expand this simulation by introducing more

complex behaviors, adding obstacles, varying the distribution of

food sources, or implementing different movement strategies for

the turtles. NetLogo's flexibility allows you to create various

scenarios and explore emergent behaviors in multi-agent systems.

Agent based Systems #1 Budditha Hettige

47

Example 3

We'll create a scenario where turtles forage for food, but they also

need to avoid obstacles represented by red patches. Additionally,

we'll add a condition for the turtles to reproduce when they have

collected a certain amount of food.

to setup

 clear-all

 ask patches [

 set pcolor green ; Set the color of all patches to green

(representing food)

 set plabel "" ; Clear any existing labels on patches

]

 ask n-of 50 patches [

 set pcolor red ; Set the color of 50 patches to red (representing

obstacles)

]

 create-turtles 5 [

 set shape "turtle"

 set color blue ; Set the color of each turtle to blue

 set size 1.5 ; Set the size of each turtle

 setxy random-xcor random-ycor ; Place turtles at random

positions on the canvas

 set food-collected 0 ; Initialize the food-collected variable for

each turtle

]

Agent based Systems #1 Budditha Hettige

48

 reset-ticks

end

to go

 ask turtles [

 ; Check for nearby food patches

 let target one-of patches in-radius 3 with [pcolor = green]

 ; Check for nearby obstacles

 let obstacle one-of patches in-radius 2 with [pcolor = red]

 if obstacle = nobody [

 if target != nobody [

 face target ; Face the target patch

 fd 1 ; Move the turtle toward the target

 set pcolor white ; Change the color of the patch to white

(food eaten)

 set plabel "+" ; Label the patch to indicate that food was

consumed

 set food-collected food-collected + 1 ; Increment food-

collected by 1

]

] else [

 ; If an obstacle is nearby, turn away from it

Agent based Systems #1 Budditha Hettige

49

 rt random 180

]

 ; Reproduce if the turtle has collected enough food

 if food-collected >= 5 [

 hatch 1 [

 set shape "turtle"

 set color blue

 set size 1.5

 set food-collected 0 ; Reset food-collected for the new turtle

 rt random 360 ; Randomly turn the new turtle

 fd 2 ; Move the new turtle forward by 2 units

]

 set food-collected 0 ; Reset food-collected for the current

turtle

]

]

 tick

end

In this enhanced example, we've added a few new features:

Agent based Systems #1 Budditha Hettige

50

 Obstacles: We added red patches as obstacles. Turtles will turn

away from these obstacles if they are within a radius of 2 units.

 Food Collection: When turtles find food patches (green), they

move towards them and consume the food. The food-collected

variable keeps track of the number of food items each turtle has

eaten.

 Reproduction: When a turtle has collected at least 5 units of

food, it reproduces by creating a new turtle near its location. The

new turtle inherits the parent's color, shape, and size, and it starts

with a food-collected value of 0.

Here's how you can use this code:

 Open NetLogo and create a new model.

 Copy the above code and paste it into the Code tab of the

NetLogo interface.

 Click on the "Setup" button to create 5 turtles at random

positions, set up the food sources (green patches), and add

obstacles (red patches) on the canvas.

Agent based Systems #1 Budditha Hettige

51

 Click on the "Go" button to start the simulation. Turtles will

move around, forage for food, avoid obstacles, and reproduce

when they have collected enough food.

You can further experiment and modify the code to add more

complex behaviors and interactions between turtles, food, and

obstacles. NetLogo provides a powerful platform for modeling

and exploring emergent behavior in multi-agent systems.

Examples

Random Walk:

Description: Agents move randomly on a 2D grid.

globals [num-agents]

to setup

 clear-all

 set num-agents 50

 create-turtles num-agents [

 setxy random-xcor random-ycor

]

reset-ticks

end

to go

Agent based Systems #1 Budditha Hettige

52

 ask turtles [

 rt random 360

 fd 1

]

 tick

end

Step-by-step guide:

 Create a new NetLogo model and clear the existing code.

 Copy and paste the above code into the Code tab.

 Click the "setup" button to initialize the simulation.

 Click the "go" button to start the random walk simulation.

NetLogo is a powerful multi-agent modeling environment used

for simulating complex systems. Below are ten example models

with step-by-step guides to get you started. For each example,

I'll provide a brief description, followed by the NetLogo code

and step-by-step instructions on how to set up and run the simu-

lation.

Please note that the code examples below assume you have

NetLogo installed on your computer. If you don't have it, you

can download it from the official website (ccl.northwest-

ern.edu/netlogo/).

1. Random Walk: Description: Agents move randomly on a

2D grid.

Agent based Systems #1 Budditha Hettige

53

NetLogo Code:

netlogo

globals [num-agents]

to setup

 clear-all

 set num-agents 50

 create-turtles num-agents [

 setxy random-xcor random-ycor

]

 reset-ticks

end

to go

 ask turtles [

 rt random 360

 fd 1

]

 tick

end

Step-by-step guide:

• Create a new NetLogo model and clear the existing code.

• Copy and paste the above code into the Code tab.

• Click the "setup" button to initialize the simulation.

• Click the "go" button to start the random walk simula-

tion.

2. Boids: Description: Simulate flocking behavior inspired

by bird flocking.

NetLogo Code:

netlogo

breed [boids boid]

to setup

 clear-all

 create-boids 100 [

 set shape "fish"

Agent based Systems #1 Budditha Hettige

54

 set color blue

 setxy random-xcor random-ycor

 set heading random-float 360

]

 reset-ticks

end

to go

 ask boids [

 align

 cohere

 separate

 fd 1

]

 tick

end

to align

 ; alignment code here

end

to cohere

 ; cohesion code here

end

to separate

 ; separation code here

end

Step-by-step guide:

• Create a new NetLogo model and clear the existing code.

• Copy and paste the above code into the Code tab.

• Implement the align, cohere, and separate procedures

(flocking rules) inside the respective placeholders.

• Click the "setup" button to initialize the simulation.

• Click the "go" button to start the Boids simulation.

3. Predator-Prey (Foxes and Rabbits): Description: Simu-

late a predator-prey interaction between foxes and rab-

bits.

Agent based Systems #1 Budditha Hettige

55

NetLogo Code:

netlogo

breed [rabbits rabbit]

breed [foxes fox]

to setup

 clear-all

 create-rabbits 50 [

 setxy random-xcor random-ycor

]

 create-foxes 20 [

 setxy random-xcor random-ycor

]

 reset-ticks

end

to go

 ask rabbits [

 move

 reproduce-rabbits

]

 ask foxes [

 move

 reproduce-foxes

 hunt

]

 tick

end

to move

 ; movement code here

end

to reproduce-rabbits

 ; reproduction code here

end

to reproduce-foxes

 ; reproduction code here

end

to hunt

 ; hunting code here

end

Agent based Systems #1 Budditha Hettige

56

Step-by-step guide:

• Create a new NetLogo model and clear the existing code.

• Copy and paste the above code into the Code tab.

• Implement the move, reproduce-rabbits, reproduce-

foxes, and hunt procedures inside the respective place-

holders.

• Click the "setup" button to initialize the simulation.

• Click the "go" button to start the predator-prey simula-

tion.

4. Forest Fire Spread: Description: Simulate the spread of a

forest fire.

NetLogo Code:

netlogo

globals [prob-spontaneous-growth prob-lightning]

to setup

 clear-all

 set prob-spontaneous-growth 0.01

 set prob-lightning 0.001

 ask patches [

 ifelse random-float 1 < 0.2

 [set pcolor green]

 [set pcolor brown]

]

 reset-ticks

end

to go

 ask patches with [pcolor = green] [

 if any? neighbors with [pcolor = red]

 [ifelse random-float 1 < prob-lightning

 [set pcolor red]

 [ifelse random-float 1 < prob-spontaneous-

growth

 [set pcolor green]

 [ask one-of neighbors with [pcolor = red]

[set pcolor red]]

]

Agent based Systems #1 Budditha Hettige

57

]

]

 tick

end

Step-by-step guide:

• Create a new NetLogo model and clear the existing code.

• Copy and paste the above code into the Code tab.

• Click the "setup" button to initialize the simulation.

• Click the "go" button to start the forest fire spread simu-

lation.

5. Schelling's Segregation Model: Description: Simulate

residential segregation based on Schelling's model.

NetLogo Code:

netlogo

globals [threshold]

to setup

 clear-all

 set threshold 40

 ask patches [

 ifelse random-float 1 < 0.7

 [set pcolor white]

 [set pcolor black]

]

 ask n-of (count patches * 0.3) patches [set

pcolor gray]

 reset-ticks

end

to go

 ask patches [

 if pcolor != gray [

 let same-color count neighbors with [pcolor =

[pcolor] of myself]

 let different-color count neighbors with

[pcolor != [pcolor] of myself]

 ifelse (same-color + different-color) > 0 [

Agent based Systems #1 Budditha Hettige

58

 if (same-color / (same-color + different-

color)) < threshold / 100 [

 move-to one-of patches with [pcolor =

gray]

]

] [

 move-to one-of patches with [pcolor = gray]

]

]

]

 tick

end

Step-by-step guide:

• Create a new NetLogo model and clear the existing code.

• Copy and paste the above code into the Code tab.

• Click the "setup" button to initialize the simulation.

• Click the "go" button to start the Schelling's segregation

simulation.

6. Virus Spread: Description: Simulate the spread of a virus

in a population.

NetLogo Code:

netlogo

globals [infection-radius infection-probability re-

covery-time]

to setup

 clear-all

 set infection-radius 2

 set infection-probability 0.5

 set recovery-time 20

 create-turtles 100 [

 setxy random-xcor random-ycor

 set color blue

 set shape "person"

 set size 1

]

 ask n-of 5 turtles [set color red]

 reset-ticks

Agent based Systems #1 Budditha Hettige

59

end

to go

 ask turtles [

 if color = red [

 spread-virus

 recover

]

]

 tick

end

to spread-virus

 ask turtles in-radius infection-radius with

[color = blue and random-float 1 < infection-proba-

bility] [
